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Abstract: We use group theoretic methods to calculate the spectrum of short multiplets

around the extremum of N = 8 gauged supergravity potential which possesses N = 2

supersymmetry and SU(3) global symmetry. Upon uplifting to M-theory, it describes a

warped product of AdS4 and a certain squashed and stretched 7-sphere. We find quan-

tum numbers in agreement with those of the gauge invariant operators in the N = 2

superconformal Chern-Simons theory recently proposed to be the dual of this M-theory

background. This theory is obtained from the U(N) × U(N) theory through deforming

the superpotential by a term quadratic in one of the superfields. To construct this model

explicitly, one needs to employ monopole operators whose complete understanding is still

lacking. However, for the U(2)×U(2) gauge theory we make a proposal for the form of the

monopole operators which has a number of desired properties. In particular, this proposal

implies enhanced symmetry of the U(2) × U(2) ABJM theory for k = 1, 2; it makes its

similarity to and subtle difference from the BLG theory quite explicit.
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1 Introduction and summary

During the recent months, remarkable progress has taken place in understanding the world

volume theory of coincident M2-branes. This was precipitated by the discovery by Bagger

and Lambert [1–3], and by Gustavsson [4], of the 2+1 dimensional superconformal Chern-

Simons theory with the maximal N = 8 supersymmetry and manifest SO(8) R-symmetry

(these papers were inspired in part by the ideas of [5, 6]). The Bagger-Lambert-Gustavsson

(BLG) 3-algebra construction was, under the assumption of manifest unitarity, limited to

the gauge group SO(4). This BLG theory is conveniently reformulated as an SU(2)×SU(2)

gauge theory with conventional Chern-Simons terms having opposite levels k and −k [7, 8].

While the extension to more general gauge groups at first appeared to be difficult, major

progress was eventually achieved by Aharony, Bergman, Jafferis and Maldacena (ABJM) [9]

who proposed a U(N) × U(N) Chern-Simons gauge theory with levels k and −k as a

dual description of N M2-branes placed at the singularity of R8/Zk. The Zk acts by

simultaneous rotation in the four planes; for k > 2 this orbifold preserves only N = 6

supersymmetry. ABJM gave strong evidence that their Chern-Simons gauge theory indeed

possesses this amount of supersymmetry, and further work in [10, 11] provided confirmation
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of this claim. Furthermore, for k = 1, 2 the supersymmetry of the orbifold, and therefore

of the gauge theory, is expected to be enhanced to N = 8. This is not manifest in the

ABJM theory. Generally, inclusion of monopole operators is expected to play a crucial

role both in the enhancement of the supersymmetry and in describing the full spectrum

of gauge invariant operators. Explicit construction of these monopoles in ABJM theory

was initiated in [12] but not all properties required here have been established. We will

make some comments on these monopole operators, although our explicit calculations will

mostly refer to the U(2)×U(2) case. Without the use of monopole operators one can make

at most N = 6 supersymmetry manifest in theories with higher rank gauge groups. These

theories were classified in [13].

The explicit formulation of highly supersymmetric theories on M2-branes raises hope

that one can also formulate AdS4/CFT3 dualities with reduced supersymmetry. To this

end one may consider orbifolds or orientifolds of the BLG and ABJM theories [10, 14–19].

But it is also interesting to look for gauge theories that are dual to backgrounds that do

not locally look like AdS4 × S7. Recent steps in this direction were made in [20] where

a dual to the N = 1 supersymmetric squashing of the S7 was proposed, and in [21–27]

where S7 was replaced by manifolds preserving N = 2 or N = 3 supersymmetry. In

the present paper we continue the program begun in [10] (see also [28]) where an N = 2

superpotential deformation of k = 1, 2 ABJM theory by a term quadratic in one of the

bi-fundamental superfields was shown to create an RG flow leading a to new Chern-Simons

CFT with N = 2 supersymmetry and SU(3) global symmetry. This CFT was conjectured

to be dual to Warner’s SU(3) × U(1)R invariant extremum [29] of the potential in the

gauged N = 8 supergravity [30]. This extremum was uplifted to an 11-dimensional warped

AdS4 background containing a ‘squashed and stretched’ 7-sphere [31] (this terminology

suggested the title of our paper). This background is of the Englert type in that there

is a 4-form field strength turned on in the 7-sphere directions [32]. As a result, it breaks

parity (reflection of one world volume direction accompanied by CIJK → −CIJK) and we

will show that the parity is also broken in the gauge theory. The N = 2 superconformal

symmetry of this background facilitates the comparison, via the AdS/CFT map [33–35], of

the SU(3)× U(1)R quantum numbers and energies of supergravity fluctuations with those

of the gauge invariant operators in the Chern-Simons CFT. One interesting feature of the

gauge theory is that far in the IR the effective superpotential is sextic in the bi-fundamental

chiral superfields. The marginality then requires that their U(1)R charges equal 1/3.

On the supergravity side, the analysis of the SU(3) × U(1)R quantum numbers was

initiated in [36], where some low-lying supermultiplets were constructed. It was noted that

N = 2 supersymmetry allowed for two alternative ways of assigning SU(3)×U(1)R quantum

numbers; however, the two U(1) embeddings were found to be essentially equivalent at the

lowest level [36]. Indeed, in appendix B we will show that there is no difference between the

two choices in the values of m2 in AdS4 corresponding to the lowest hypermultiplet studied

in [36]. The only difference concerns the choice of branches in the square root formula enter-

ing the operator dimensions. However, working only at the level of superconformal symme-

try alone and not doing an explicit KK reduction, we show that these two choices of assign-

ing SU(3) ×U(1)R quantum numbers lead to completely different spectra at higher levels.

It should be stressed that even though such a group theoretical method does not necessar-
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ily lead to a unique answer, it is a rather efficient tool to gain insights into the spectrum.

The first assignment of charges, which we will call Scenario I, produces agreement with the

proposed gauge theory. The second one, Scenario II, which for the lowest hypermultiplet

was spelled out in [36], turns out not to agree with our gauge theory proposal. In general,

the mass spectra resulting from the two scenarios are distinct and hence an explicit KK re-

duction could agree with only one of them. We show that when considering higher massive

multiplets, Scenario II does not appear to give a spectrum characteristic of KK reduction.1

In section 2 we review the gauged supergravity analysis of multiplets from [36], extend

this work to higher levels and scrutinize the differences between Scenarios I and II for

grouping fluctuations into supermultiplets. In section 3 we review the ABJM theory and

its relevant deformation, emphasizing the important role of monopole operators. We show

how the expected symmetries of the theory emerge for N = 2 for a certain form of these

operators. In section 4 we analyze the short multiplets of chiral operators, demonstrating

agreement with the gauged supergravity. The general structure of N = 2 supermultiplets,

and their specific examples occurring in this theory, as well as some comments on the

monopole operators are left for the appendices.

2 Supergravity side

The supergravity background proposed in [10] as a dual to the mass deformed ABJM gauge

theory (a related yet somewhat different proposal independently appeared in [28]) was first

found by Warner [29] as one of several non-trivial extrema of the gauged N = 8 SUGRA

potential [30]. The vacuum of interest preserves N = 2 SUSY and the global symmetry

SU(3) × U(1) (broken down from SO(8)) and corresponds to a scalar and a pseudo-scalar

of N = 8 gauge supergravity acquiring VEVs. As a consequence, this background does not

preserve parity.

The 11d uplift of this AdS4 vacuum was found more recently, in [31], and studied

further in [38]. The solution is not a simple Freund-Rubin direct product AdS4 × X7

but instead the metric of AdS4 is warped by a function f(y) of the coordinates y on the

internal manifold X7. X7 itself is a ‘squashed and stretched’ S7 [31]. As noted earlier,

this background has an Englert type flux in the S7 directions [32], which is another way of

seeing the breaking of parity.

To determine the SUGRA spectrum, one could in principle perform the 11 → 4 dimen-

sional KK reduction on this warped, squashed and stretched space. By performing the KK

reduction for modes of various AdS4 spin, one can group the resulting particles into N = 2

supermultiplets of definite energy. Such an analysis was performed for example in [39, 40]

for Freund-Rubin vacua with X7 = M111, Q111. We can avoid such an involved calcula-

tion for this warped spacetime since it is obtained at the end of a SUSY preserving RG

flow from the N = 8 theory. A similar analysis has been performed earlier in [36] for the

SU(3) × U(1)R case at hand and in [41] for the analogous case in AdS5/CFT4 for a gauge

theory with SU(2) × U(1) symmetry. However, here we go beyond gauged supergravity

and study the rearrangement of the massive KK modes of the N = 8 theory into N = 2

1In fact, some evidence for the correctness of scenario I has recently been obtained also from solving the

minimally coupled scalar equation in the background under consideration [37].
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Spin Field SO(8) irrep SO(8) Dynkin labels

2 eµ
a 1 [0, 0, 0, 0]

3
2 ψµ

I 8s [0, 0, 0, 1]

1 Aµ
IJ 28 [0, 1, 0, 0]

1
2 χIJK 56s [1, 0, 1, 0]

0+ S[IJKL]+ 35v [2, 0, 0, 0]

0− P [IJKL]
− 35c [0, 0, 2, 0]

Table 1. The massless N = 8 supermultiplet. All degrees of freedom of 11d supergravity form one

supermultiplet. When compactified on a round seven-sphere this supermultiplet splits into a series

of Osp(8|4) supermultiplets. This table lists the components of the lowest supermultiplet in this

series.

Spin Field SO(8) Dynkin labels

2 eµ
a [n, 0, 0, 0]

3
2 ψµ

I [n, 0, 0, 1] + [n− 1, 0, 1, 0]

1 Aµ
IJ [n, 1, 0, 0] + [n− 1, 0, 1, 1] + [n− 2, 1, 0, 0]

1
2 χIJK [n+ 1, 0, 1, 0] + [n− 1, 1, 1, 0] + [n − 2, 1, 0, 1] + [n− 2, 0, 0, 1]

0+ S[IJKL]+ [n+ 2, 0, 0, 0] + [n− 2, 2, 0, 0] + [n − 2, 0, 0, 0]

0− P [IJKL]
− [n, 0, 2, 0] + [n− 2, 0, 0, 2]

Table 2. The massive N = 8 supermultiplet at level n. Representations with negative labels are

absent. For n = 0 the massless N = 8 supermultiplet from table 1 is recovered.

supermultiplets. In doing so, we find that of the two alternative charge assignments, only

one (referred to as “Scenario I” below) leads to agreement with the proposed gauge dual,

while the other (“Scenario II”) does not appear to be characteristic of a KK reduction.

Hence while both assignments are consistent at the level of symmetry, only the former is

likely to be reproduced through an explicit KK reduction from 11 → 4 dimensions.

2.1 Spectrum on the stretched and squashed seven-sphere

The spectrum of N = 8 supermultiplets obtained by KK reduction on the round S7 is

well-known [42, 43]. All multiplets are shortened and have maximum spin 2. The mass-

less multiplet is shown in table 1 while the SO(8)R representations that higher massive

multiplets transform in is presented in table 2.

Now we would like to find the spectrum on the deformed S7. We do this by exploiting

the restrictions on the spectrum due to the symmetries of the background. The strategy

for this derivation is summarized in the following diagram:

Osp(8|4) stretching and−−−−−−−−−−−−−−→
squashing of S7

SU(3) × Osp(2|4)

decompose N = 8
supermultiplets





y

x





assemble N = 2
supermultiplets

SO(8)R × SO(3, 2)
RG flow−−−−−−−−−−→ SU(3) × U(1)R × SO(3, 2)

(2.1)
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Spin SO(8) SU(3)

2 1 → 1
3
2 8s → 3 + 3̄ + 2 · 1
1 28 → 8 + 3 · 3 + 3 · 3̄ + 2 · 1
1
2 56s → 2 · 8 + 6 + 6̄ + 4 · 3 + 4 · 3̄ + 4 · 1

0+ 35v → 8 + 6 + 6̄ + 2 · 3 + 2 · 3̄ + 3 · 1
0− 35c → 8 + 6 + 6̄ + 2 · 3 + 2 · 3̄ + 3 · 1

Table 3. Decomposition of the massless N = 8 supermultiplet under SU(3).

The Osp(8|4) supermultiplets are decomposed into irreducible representations of the

bosonic subgroup SO(8)R × SO(3, 2) as already given in table 1 and 2. This set of rep-

resentations is then further decomposed into irreducible representations of the bosonic

symmetry group SU(3) × U(1)R × SO(3, 2) of the IR theory. Finally, we reassemble these

bosonic multiplets into supermultiplets of Osp(2|4) with definite SU(3) representations.

This procedure is carried out for every level n separately.

The described method is applicable because the RG flow preserves the Osp(2|4) ⊂
Osp(8|4) supersymmetry. The only thing we do not know is how Osp(2|4) is embedded

into Osp(8|4), or how SU(3) × U(1)R × SO(3, 2) is embedded into SO(8)R × SO(3, 2).

Therefore we will make a general ansatz for the latter embedding:

[a, b, c, d] → [f, g]h , (2.2)

where f , g, h are linear functions of the SO(8)R Dynkin labels a, b, c, d. The functions f and

g represent the SU(3) Dynkin labels, and the function h is the U(1)R charge. The SO(3, 2)

labels are given by the spin s and the energy E. While the spin is unaltered during the flow,

the energy can in general not be determined by group theoretical arguments alone. We can

only find the energy for short multiplets where it is fixed by the values of the other labels.

The functions in the ansatz (2.2) are restricted in the following way. First of all there

are only three choices of canonical embeddings of SU(3) into SO(8) which are given by

[f, g] = [a, b] or [b, c] or [b, d]. All three choices lead to the same decomposition if the

R-charge is ignored; the result for the massless level is printed in table 3. We can now

fix the U(1)R charges as follows. Fields of different spin but same SU(3) representation

in the decomposition of the N = 8 supermultiplet must all recombine into various N = 2

supermultiplets which we list in table 8 to 16 in appendix A. This is only possible when

the R-charges of the states that go into one N = 2 supermultiplet are correlated in the

way given in the tables.

For example, there are only three fields in table 3 in the sextet 6 of SU(3) — a

spin 1/2 field and two scalars. (Recall that the deformation and the IR background are

not parity invariant and hence the UV parity assignments should be ignored.) The only

supermultiplet they can form is a hypermultiplet described by table 16. This requires

an R-charge assignment of the form2 y0 ∓ 1 for the spin 1/2 field when the scalars are

2We adopt the usual notation where the upper sign applies if y0 > 0 and the lower one if y0 < 0.
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assigned y0, y0 ∓ 2. When we repeat this multiplet-forming exercise for the other fields,

this further constrains the embedding of U(1)R into SO(8)R until we are left with exactly

two possibilities consistent with supersymmetry.

Doing this in a systematic way, we find that the two choices can be described in terms

of the Dynkin labels of SO(8) as,

[a, b, c, d] →







[a, b]( a

3
+ 2b

3
+d)ε Scenario I ,

[a, b]−( 2a

3
+ 4b

3
+c+d)ε Scenario II ,

(2.3)

where ε=±1, the two integers [a, b] give the SU(3) Dynkin labels and the subscript is the

U(1)R charge. The choice of ε=±1 is simply a flip of the U(1)R definition. We note that the

SU(3) embedding [b, c] and [b, d] lead to no consistent regrouping into N =2 supermultiplets.

With the SU(3)×U(1)R charges of Scenario I above, we proceed to group the fields into

N = 2 supermultiplets. The result for fields from the N = 8 massless sector is in table 4.

We find from the table that the massless N = 8 multiplet yields some familiar massless

N = 2 multiplets such as the massless graviton multiplet in a singlet under SU(3) and a

massless vector multiplet in the adjoint of SU(3). The former is expected in any theory

of SUGRA while the latter contains the massless bosons gauging the SU(3) symmetry in

the bulk. We also find several other massive multiplets that acquired mass in the breaking

SO(8) → SU(3)×U(1)R. When massless particles of spin 1 or greater acquire a mass, they

need to ‘eat’ spin 1/2 and spin 0 particles to furnish the extra polarizations. Hence when

we find massive gravitinos in a 3 of SU(3) for example, we need to set aside some spin

1/2 triplets from table 3 to be eaten and not group them into other multiplets. These are

listed in the last column of table 4.

Scenario II produces a different set of U(1)R charges. The grouping of massless N = 8

fields into N = 2 multiplets is detailed in table 5. The crucial differences between table 5

and table 4 are in the hyper- and long vector multiplets where a reassignment of R-charges

leads to differing physical dimensions. For the hypermultiplet, Scenario II (table 5) assigns

the ground state a R-charge of y0 = −4
3 and hence by table 16, a dimension of E0 =

|y0| = 4
3 . On the other hand, Scenario I (table 4) results in the assignment y0 = 2

3 and

E0 = |y0| = 2
3 . In appendix B we further observe that the energies of the hypermultiplet in

the two scenarios can be related to the same mass spectrum when different dressings are

used for the two different scenarios. However, this relationship holds only at level n = 0.

The massive multiplets of N = 8, listed in table 2 for n = 1, 2, 3, . . ., are decomposed in

a similar way for each of the two scenarios. We have delegated the details to the appendices

in table 17 through 23. We find several series of N = 2 multiplets as we increase n with

different R-charges in the two different scenarios. To compare with the gauge theory, the

short multiplets are the most interesting since their energy can be determined entirely

from their R-charge. We collect the four distinct series of short multiplets that emerge

from decomposing massive N = 8 multiplets in table 6 for the two scenarios. The SU(3)

representations are given in terms of Dynkin labels, i.e. [a, b] is the symmetric product of

a 3’s and b 3̄’s. The subscript again gives the U(1)R charge. When n = 0, these multiplets

are also found in tables 5, 4 discussed earlier.

– 6 –
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Spin SO(8) SU(3)U(1)

2 1 10
3
2 8s 1+1 3 ε

3
3̄− ε

3

1−1

1 28 10 80 3 4ε

3

3̄− 4ε

3

10

3− 2ε

3

3̄ 2ε

3

3− 2ε

3

3̄ 2ε

3

1
2 56s 8+1 3 ε

3
3̄− ε

3
6− ε

3
6̄ ε

3
1−1 3 ε

3

8−1 3 ε

3
3̄− ε

3
1+1 3̄− ε

3

3− 5ε

3

3̄ 5ε

3

1−1

1+1

0+ 35v 80 3− 2ε

3

3̄ 2ε

3

6 2ε

3

6̄− 2ε

3

12 3 4ε

3

10 3̄− 4ε

3

1−2

0− 35c 80 6− 4ε

3

6̄ 4ε

3

10 3− 2ε

3

10 3− 2ε

3

3̄ 2ε

3

3̄ 2ε

3

10

M
as

sl
es

s
gr

av
it
on

M
as

sl
es

s
ve

ct
or

M
as

si
ve

sh
or

t
gr

av
it
in

o

M
as

si
ve

sh
or

t
gr

av
it
in

o

M
as

si
ve

h
y
p
er

M
as

si
ve

h
y
p
er

M
as

si
ve

ve
ct

or

ea
te

n

Table 4. Decomposition of massless N = 8 supermultiplet: Scenario I. ε can be set to ±1.

We stress that the two scenarios arise as logical possibilities when one only works at

the level of the symmetry breaking SO(8) → SU(3) × U(1)R and one does not perform an

explicit KK reduction to find the mass spectrum. The two scenarios correspond to two

different embeddings of U(1)R in SO(8). From table 6, one can easily verify that set of

masses resulting from the two scenarios are distinct (though this is not true when n = 0

as discussed in appendix B). For example, we note the unusual feature that in Scenario

II, the short gravitons have the n-independent charge [0, 0]0. This leads to n-independent

mass of m2 = 0 for the graviton. It would seem very unlikely that such an infinite sequence

of zero masses can be obtained from a KK reduction. In contrast, Scenario I has masses

that increase with n for all the short series. Thus Scenario II is unlikely to be obtained

– 7 –
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Spin SO(8) SU(3)U(1)

2 1 10
3
2 8s 1+1 3 ε

3
3̄− ε

3

1−1

1 28 10 80 3 4ε

3

3̄− 4ε

3

10

3− 2ε

3

3̄ 2ε

3

3− 2ε

3

3̄ 2ε

3

1
2 56s 8+1 3 ε

3
3̄− ε

3
6− ε

3
6̄ ε

3
1−1 3 ε

3

8−1 3 ε

3
3̄− ε

3
1+1 3̄− ε

3

3− 5ε

3

3̄ 5ε

3

1−1

1+1

0+ 35v 80 3− 2ε

3

3̄ 2ε

3

6− 4ε

3

6̄ 4ε

3

10 3− 2ε

3

10 3̄ 2ε

3

10

0− 35c 80 6 2ε

3

6̄− 2ε

3

1+2 3 4ε

3

10 3− 2ε

3

1−2 3̄− 4ε

3

3̄ 2ε

3

M
as

sl
es

s
gr

av
it
on

M
as

sl
es

s
ve

ct
or

M
as

si
ve

sh
or

t
gr

av
it
in

o

M
as

si
ve

sh
or

t
gr

av
it
in

o

M
as

si
ve

h
y
p
er

M
as

si
ve

h
y
p
er

M
as

si
ve

ve
ct

or

ea
te

n

Table 5. Decomposition of massless N = 8 supermultiplet : Scenario II. ε can be set to ±1.

from an explicit KK reduction and we conjecture that it is Scenario I that will agree with

such a direct computation. Hence we will primarily work with Scenario I in this paper and

compare it with proposed dual gauge theory.

3 Gauge theory side

In this section we discuss the conjectured gauge theory dual to the supergravity background

described above, i.e. the warped product of AdS4 and a squashed and stretched S7. We

provide evidence that this gauge theory is the IR limit of the ABJM theory [9] with a

superpotential mass term for one of the superfields, as conjectured in [10] (see also [28]).

– 8 –
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Scenario I Scenario II

Hyper [n+ 2, 0]n+2

3

, [0, n+ 2]−n+2

3

[n+ 2, 0]− 2n+4

3

, [0, n + 2] 2n+4

3

Vector [n+ 1, 1]n

3
, [1, n + 1]−n

3
[n+ 1, 1]− 2n

3

, [1, n + 1] 2n

3

Gravitino [n+ 1, 0]n+1

3

, [0, n+ 1]−n+1

3

[n+ 1, 0]− 2n−1

3

, [0, n + 1] 2n−1

3

Graviton [0, 0]n, [0, 0]−n [0, 0]0, [0, 0]0

Table 6. Series of short multiplets in the two scenarios. These are four series of short multiplets

labeled by n = 0, 1, 2, . . .. When n = 0, there is only one [1, 1]0 vector and one [0, 0]0 graviton, both

of which are massless.

3.1 Review of ABJM theory

We begin with a brief recap of ABJM theory [9] following the notation in [10]. The

U(N) × U(N) gauge superfields are Va
b and V̂ â

b̂. The matter superfields (ZA)aâ and

(WA)âa transform under gauge transformations in the representation (N, N̄) and (N̄,N),

respectively. They also transform under two different global SU(2)’s in the 2 and 2̄ in-

dicated by the indices A = 1, 2. The action is given by standard Chern-Simons terms

with level k for V and level −k for V̂. The matter action is given by the standard kinetic

terms for Z and W minimally coupled to the gauge fields. Finally, the theory includes the

SU(2) × SU(2) invariant superpotential [44]

W =
1

4
ǫACǫ

BD trZAWBZCWD . (3.1)

This gauge theory was conjectured to be the CFT dual of M-theory on AdS4 × (S7/Zk)

supported by N units of 4-form flux [9].

Special attention needs to be paid to the U(1) × U(1) part of the gauge group. All

matter fields are neutral under one linear combination of the U(1)’s, cµ, which therefore

corresponds to the center of mass degree of freedom of the stack of M2-branes. The flux

for this non-interacting U(1) is quantized, and it may be dualized into a periodic scalar.

As a result the other linear combination, the ‘baryonic’ U(1) gauge field bν , which enters

the Chern-Simons action as

k

2π
ǫµνλbµ∂νcλ , (3.2)

gets broken to Zk [9] through a mechanism demonstrated in [45, 46]. The generator of this

group acts on the superfields as

ZA → e2πi/kZA , WB → e−2πi/kWB . (3.3)

This argument loosely suggests that for k = 1 the U(N) × U(N) gauge theory is simply

equivalent to the SU(N) × SU(N). However, this is not quite correct since the moduli

spaces of the two theories are different [9, 45, 46].3 The ABJM theory with k > 2 has been

3For k = 2 and N = 2 the moduli spaces of the two gauge theories do coincide [45, 46], so in this case

they may be equivalent.
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demonstrated to possess the N = 6 superconformal invariance, in agreement with that

of its proposed M-theory dual. For k = 1, 2 the superconformal symmetry of the ABJM

theory is expected to enhance to N = 8 but this is yet to be demonstrated explicitly. An

important manifestation of this enhancement is that, when N = 2 superspace is used, then

the theory possesses U(1)R × SU(4) global symmetry. Although the non-R SU(4) flavor

symmetry is difficult to establish in general, in the next section we discuss how it may

appear using some specific examples.

3.2 Towards establishing the U(1)R × SU(4) invariance

In [10] the BLG theory was reformulated using N = 2 superspace where its has manifest

U(1)R × SU(4) global symmetry. This theory is exactly equivalent to the SU(2) × SU(2)

version of the ABJM theory [9]. The four complex bi-fundamental superfields ZA of the

BLG theory, which transform in the fundamental of the global SU(4), are related to the

fields entering (3.1) through

Z3 = W‡
1 , Z4 = W‡

2 . (3.4)

This uses an operation special to the SU(2) × SU(2) gauge theory

W‡ := −ǫWT ǫ with ǫ =

(

0 1

−1 0

)

(3.5)

because it relies on the invariant tensor ǫab. After this transformation the superpoten-

tial (3.1), which is manifestly only SU(2)2 invariant, acquires the SU(4) invariant form [10]

W =
1

4!
ǫABCDtrZAZ‡BZCZ‡D = − 1

8 · 4!ǫABCDǫ
abcdZA

c ZB
b ZC

c ZD
d (3.6)

where the relation to SO(4) notation ZA
a is explained in [10].

Below we will suggest how the operation (3.4) may be generalized to U(N) × U(N)

gauge theories. To accomplish this one likely has to invoke monopole operators, often called

’t Hooft operators because of his pioneering work [47]. Such operators naturally carry the

magnetic charge determined by the flux they insert at a point. In a Chern-Simons theory,

they also carry an electric charge (or gauge representation) proportional to the Chern-

Simons level k. We assemble some useful facts about these operators in appendix D. For

a recent explicit study of monopole operators in the ABJM theory, see [12].

When k = 1, the simplest monopole operators are (eτ )aâ, which transforms in the rep-

resentation (N, N̄), and its conjugate (e−τ )âa. They are obtained for the choices of flux de-

scribed in appendix D. We can also construct the “double” monopole operators, (e2τ )ab
âb̂

and

(e−2τ )âb̂
ab. They can be either symmetric or anti-symmetric under separate interchanges of

upper or lower indices, but both choices have the symmetry under the interchange of both:

(e2τ )ab
âb̂

= (e2τ )ba
b̂â

, (e−2τ )âb̂
ab = (e−2τ )b̂âba . (3.7)

These operators transform under U(N)×U(N) as indicated by their indices. In particular,

they are charged under the baryonic U(1) gauge group, which is the interacting part of

the U(1) × U(1). In our notation, enτ has charge n under this baryonic U(1).
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When k = 2, no choice of flux can give an operator of the form (eτ )aâ and the smallest

operators one can form are (e2τ )ab
âb̂

and its conjugate, as discussed in the appendix.

Let us use the monopole operators to establish U(1)R ×SU(4) symmetry of the U(2)×
U(2) ABJM theory, which has some subtle differences from the BLG theory. Inspired

by (3.5), we propose to use the monopole operators in the ABJM gauge theory that are

anti-symmetric in each set of indices,

(e2τ )ab
âb̂

= −(e2τ )ba
âb̂

, (e2τ )ab
âb̂

= −(e2τ )ab
b̂â
. (3.8)

Thinking of the N = 2 ABJM gauge theory as SU(2) × SU(2) × U(1) × U(1), we can use

the SU(2) invariant tensors to write this as,

(e2τ )ab
âb̂

= T 2ǫabǫâb̂ , (e−2τ )âb̂
ab = T−2ǫabǫ

âb̂ , (3.9)

where T 2 is a monopole operator that creates two (one) units of magnetic flux when k = 1

(k = 2) for the decoupled U(1) field cµ in the U(1)×U(1) Chern-Simons gauge theory (3.2)

coupled to the charged matter. Due to the coupling (3.2), T 2 is doubly charged under the

baryonic U(1) in both cases (k = 1, 2).

Using the expressions (3.9) valid when N = 2, the following invertibility identity can

be verified,

(e2τ )ab
âb̂

(e−2τ )b̂ĉbc = δa
c δ

ĉ
â , (3.10)

where we have assumed that these monopole operators do not contribute to the scaling

dimensions of gauge invariant operators. This is a non-trivial assumption, since in some

theories where the monopole operators were constructed explicitly, their scaling dimensions

are non-vanishing [48, 49]. The assumption that their scaling dimensions vanish in the

ABJM theory was central in forming operators with the right dimension and R-charge for

AdS/CFT duality [9], and that will be the case here as well. However a definitive proof of

this has been lacking.

To search for a global symmetry enhancement in the superpotential (3.1), let us intro-

duce a multiplet of superfields in the fundamental of SU(4)

ZA = (Z1,Z2,W1e
2τ ,W2e

2τ ) , A = 1, 2, 3, 4, (3.11)

where the explicit index structure is

(Z3)aâ = (W1)
b̂
b(e

2τ )ab
âb̂

, (Z4)aâ = (W2)
b̂
b(e

2τ )ab
âb̂
. (3.12)

We note that the fields ZA, A = 1, . . . 4 have the same baryonic charge, even though W1,2

have the opposite charge. With this definition the superpotential can be written as

W =
1

2
(Z1)aâ(Z2)bb̂(Z3)cĉ(Z4)dd̂

[

(e−2τ )âĉ
bc (e

−2τ )b̂d̂ad − (e−2τ )âd̂
bd (e−2τ )b̂ĉac

]

. (3.13)

In the U(2) × U(2) ABJM theory, using the expressions (3.9), we find that the superpo-

tential (3.13) has a close relation to that of the BLG theory, but also contains the abelian

monopole operators needed for its U(1)b gauge invariance:

W =
1

4!
T−4ǫABCDtrZAZ‡BZCZ‡D . (3.14)
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It would be very interesting to extend the validity of the above arguments and expressions

to N > 2, and to establish the SU(4) invariance of the superpotential in the U(N)×U(N)

ABJM theory. This would provide a clear argument in favor of its N = 8 supersymmetry.

3.3 Quadratic deformations of the superpotential

While for any k we can add quadratic operators of the form trZAWB, for k = 1 and k = 2

we can also deform the ABJM theory by a relevant operator which is quadratic in just one of

the chiral superfields. To write these operators explicitly we need the monopole operators:

∆W = m(Z4)aâ(Z4)bb̂(e
−2τ )âb̂

ab (3.15)

This relevant operator creates RG flow. To find the effective superpotential of the infrared

theory, we integrate out the massive field Z4 in the IR, leaving a sextic potential for

the remaining fields. It is natural to conjecture [10] that this IR fixed point is dual to the

warped AdS4 background of M-theory containing a U(1)R×SU(3) symmetric ‘squashed and

stretched’ 7-sphere, whose original gauged supergravity formulation was found in [29]. In

order to achieve the U(1)R symmetry, the total R-charge of the superpotential should equal

2. In [9] it was assumed that all the necessary monopole operators have vanishing R-charge

and dimension. We will assume the same here without a more detailed study involving

matter fields to justify this. Then we can assign the following dimensions and R-charges:

∆(ZA) = R(ZA) =
1

3
for A = 1, 2, 3 , ∆(Z4) = R(Z4) = 1 . (3.16)

It is interesting that the U(1) symmetry with these charges holds not just in the IR,

but along the entire RG flow. The M-theory dual of this RG flow was found in [29, 38].

Remarkably, it possesses [50] a U(1) symmetry with the same charges as in the field

theory.4 This can be demonstrated by identifying the U(1) symmetry of the 3-form

potential (see eq. (121), (122) of [50]) and showing that three of the complex coordinates

of the 7-sphere transform with charge 1/3, and the fourth one with charge 1. This provides

an immediate check of the gauge/gravity duality along the entire RG flow.

For general N explicit demonstration of the SU(3) global symmetry of the superpo-

tential remains a challenge, just like the SU(4) global symmetry of the ABJM superpoten-

tial (3.13). Fortunately, this symmetry is explicit for U(2) × U(2) ABJM theory, if we use

our assumption (3.9) about the monopole operators. Then the quadratic superpotential

deformation assumes the form

∆W = mT−2 trZ4Z4‡ . (3.17)

which is closely related to the deformation of the BLG theory proposed in [10]. Adding

such a mass term and integrating out Z4, we find

Z4 = −T−2

12m
ǫABC ZAZ‡BZC (3.18)

4We thank Juan Maldacena for an enlightening discussion on this issue.
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and hence the new superpotential,

Weff =
T−6

144m
ǫABCǫDEF trZAZ‡BZCZ‡DZEZ‡F . (3.19)

We conclude this section by making the breaking of parity invariance due to the

deformation (3.17) more apparent.5 The parity operation in the gauge theory sends

(x0, x1, x2) → (x0,−x1, x2) [8]. The fermionic coordinates transform as θα = −γ1
αβθ

β.

These maps are accompanied by a transformation of the fields. In the N = 2 theory the

superfield transforms as ZA → Z‡A (A = 1, . . . , 4), and the component fields as ZA → Z‡A,

ζA
α → γ1

αβζ
‡Aβ, and FA → −F ‡A (A = 1, . . . , 4). Now, consider the deformation (3.17)

integrated over superspace

∆Lpot = mT−2

∫

d2θ trZ4Z‡4

= −mT−2 tr ζ4ζ‡4 + 2mT−2 trF 4Z‡4

= −mT−2 tr ζ4ζ‡4 + T−4mL

3
ǫABC tr Z̄AZ̄

‡
BZ̄CZ

‡4 , (3.20)

where in the last line we replaced the auxiliary field F using its equation of motion. Any

of these expressions makes it explicit that ∆Lpot is parity odd and hence breaks the parity

invariance of the original theory.

4 Matching of short multiplets

Having described the field content of the IR fixed point, we can proceed to match gauge

theory operators with the gravity multiplets found earlier. For every supermultiplet there

is a superfield of the gauge theory. Long supermultiplets correspond to unconstrained su-

perfields, short supermultiplets to constrained ones. We will focus on the four series of

short multiplets (cf. table 6) and show that with our assignment there are four correspond-

ing series of gauge theory operators. For the duality to hold it is essential to assign the

charges of the IR gravity states according to Scenario I.

To facilitate the comparison of the components of the gravity supermultiplets and the

components of the gauge theory superfields, we summarize the charges of the component

fields in table 7.

Hypermultiplets. In section 2 we found that, in Scenario I, the hypermultiplets come

in the SU(3) representations [n + 2, 0] where n = 0, 1, 2, . . . (see left column of table 6).

They have R-charge y0 = n+2
3 and dimension6 ∆0 = |y0| = n+2

3 , both of which suggestively

increase in steps of 1/3, the R-charge and dimension of the superfields ZA, A = 1, 2, 3.

Hence we write down a series of corresponding operators,

H(n)A1...An+2 ∼ Z(A1ZA2 · · · ZAn+2) , (4.1)

5We use the notation and conventions of [10].
6 y0 and ∆0 in this section must be compared to y0 and E0 in table 8 to 16. Note that ∆0 = E0 refers

to the dimension of the ground state in a multiplet and the dimensions of the other components are related

as shown in those tables.
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ZA ζA Z†
A ζ†A Z4 ζ4 Z†

4 ζ†4 x θ θ̄

SU(3) 3 3 3̄ 3̄ 1 1 1 1 1 1 1

Dimension 1
3

5
6

1
3

5
6 1 3

2 1 3
2 −1 −1

2 −1
2

R-charge +1
3 −2

3 −1
3 +2

3 +1 0 −1 0 0 +1 −1

Table 7. Dimensions and R-charges of building blocks. The components of the superfields are

Z = Z +
√

2θαζα + aux. and Z̄ = Z† −
√

2θ̄αζ†
α

+ aux.

ignoring their gauge indices for the moment. We have symmetrized the SU(3) indices Ai to

obtain the [n+2, 0] representation. These operators are chiral, D̄αH
(n) = 0, which implies

that they have the structure of the N = 2 hypermultiplet as given in table 16. To see this

explicitly in this simple example, we write out the components of this superfield:

H(n) ∼ Z(A1 · · ·ZAn+2)

+ n
√

2 θα ζ(A1

α ZA2 · · ·ZAn+2)

− 1

2
n(n− 1) θ2 ζα(A1ζA2

α ZA3 · · ·ZAn+2) . (4.2)

Using the charges from table 7, it is simple to verify that the dimensions and R-charges,

as well as the spins, of the components match.

To render the schematic operator expression (4.1) gauge invariant, we need to make

use of monopole operators. For even n, the natural expression is

H(n)A1...An+2 = trZ(A1ZA2e−2τ ZA3ZA4e−2τ · · · ZAn+1ZAn+2)e−2τ , (4.3)

where the operator e−2τ is contracted with the preceding field as (Ze−2τ )âa = Zb
b̂(e

−2τ )âb̂
ab.

For N = 2, where the form of the monopole operators simplifies, these operators become

H(n)A1...An+2 = T−n−2 trZ(A1Z‡A2 ZA3Z‡A4 · · · ZAn+1Z‡An+2) . (4.4)

They are generalizations of the n = 0 quadratic operator studied in [10]. In order to

write down the operators for odd n, present for k = 1, we need to insert one monopole

operator (e−τ )âa:

H(n)A1...An+2 = trZ(A1ZA2e−2τ · · · ZAnZAn+1e−2τZAn+2)e−τ . (4.5)

For k = 2 the operator e−τ is not available, and we can construct only the even operators.

This is consistent with the supergravity side: when n is odd and k = 2, the Z2 orbifold

action projects out the corresponding SUGRA mode.

Short graviton multiplets. From table 6, we see that the short graviton multiplets are

always SU(3) singlets. In Scenario I they possess R-charges y0 = n and dimensions ∆0 =

|y0|+2 = n+2 for n = 0, 1, 2, . . .. When n = 0, this is actually the familiar massless graviton

in AdS and hence corresponds to the energy momentum tensor in the CFT. The other two
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massless components in this supermultiplet are the gravitino which is the SUSY generator

and a massless vector boson which corresponds to the U(1)R symmetry of the dual CFT.

The gauge theory operator dual to the massless graviton multiplet is given by the

stress-energy superfield

T (0)
αβ = tr D̄(αZ̄ADβ)ZA + i tr Z̄A

↔

∂ αβ ZA , (4.6)

which satisfies the corresponding constraint DαT (0)
αβ = D̄αT (0)

αβ = 0 and has protected

classical dimension. For example the spin-two component has exact dimension 3 and the

ground state component has dimension ∆0 = 2. For higher n we expect the series to

continue schematically as

T (n)
αβ ∼ T (0)

αβ (ǫABCZAZBZC)n for n = 1, 2, 3, . . . , (4.7)

where we again understand none of the gauge indices to be contracted yet. The anti-

symmetric combination of three Zs may be thought of as the field Z4 which was integrated

out. For n ≥ 1 these superfields satisfy only D̄αT (n)
αβ = 0. Such a series has R-charge and

dimension increasing in steps of 1 and in complete agreement with Scenario I in table 6.

The fields (4.7) are again made gauge invariant by means of appropriate monopole

operators. For even n we insert a total of 3n
2 monopole operators with two units of flux,

e−2τ , and contract them with every other field as we described for the hypermultiplet. To

find the superfield corresponding to the short graviton multiplet, one also needs to sum

over all permutations of the fields. A typical term in such a sum is

tr T (0)
αβ

[(

ǫABCZAe−2τZBZCe−2τ
) (

ǫDEFZDZEe−2τZF
)

· · ·
]

. (4.8)

For odd n we need to insert another monopole operator with one unit of flux, e−τ . If

k = 2 we do not have such a monopole at our disposal and hence there are no gauge

theory operators for odd n. This mirrors the fact that such modes are projected out by

the orbifolding action on the gravity side, just as we saw for the hypermultiplets.

The dimensions and R-charge in Scenario II appear difficult to interpret in a CFT.

The corresponding short graviton series has a fixed R-charge of 0 and dimension of 2 for

all n. As remarked earlier, this does not seem characteristic of a KK reduction.

Short gravitino multiplets. The short gravitino multiplets come in the SU(3) repre-

sentations [n + 1, 0] with R-charges y0 = n+1
3 and dimensions ∆0 = |y0| + 3

2 = 2n+11
6 for

n = 0, 1, 2, . . .. Note that this is a massive multiplet even for n = 0. The existence of a

massless gravitino multiplet would indicate enhancement of SUSY beyond N = 2. Based

on this data, we can write down the following candidate superfield,

Λ(n)A1...An+1

α ∼ ǫABCZAZBZCDαZ(A1ZA2 · · · ZAn+1) , (4.9)

where the derivative acts only onto the Z next to it. These fields are a fermionic superfields

and satisfy D̄αΛα = 0. We can verify that (4.9) is the correct dual operator by checking

the explicit components of this superfield against the known SUGRA multiplet. We show
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this for n = 0. Let us restrict ourselves to N = 2 where we can use the SO(4) notation ZA
a

that enables us to write the operator in the following gauge invariant way

Λ(0)A1

α ∼ ǫABCǫ
abcdZA

a ZB
b ZC

c DαZA1

d . (4.10)

The component expansion of this superfield is (up to total derivatives)

Λ(0)A1

α ∼ ǫABCǫ
abcd
[

−
√

2i (θγµθ̄)
(

ZZZ∂µζα + ǫµνρZZZ(γν∂ρζ)α

+3 ζαZZ∂µZ − 3 ǫµνρ(γ
νζ)αZZ∂

ρZ
)

+2i (γµθ̄)α ZZZ∂µZ − 6i θ2(γµθ̄)α
(

ζζZ∂µZ + ZZζ∂µζ
)

−3 (γµθ)α ZZζγµζ −
√

2i θθ̄
(

ZZZ(/∂ζ)α + 3 (γµζ)αZZ∂µZ
)

+
√

2 ZZZζα − 3
√

2θ2 Zζζζα − 3 θα ZZζζ
]

. (4.11)

To simplify the notation, we have omitted the SU(3) indices ABCA1 and the SO(4) gauge

indices abcd from the fields on the right hand side. The dimensions, R-charges and spins

of the various terms match up with the components of the supermultiplet in table 11.

The monopole operators required to make these operators gauge invariant for general

n are similar to those used for the hypermultiplets with e−2τ inserted on every other Z
and summing over all permutations. A typical term in such a sum (when n is even) is,

(

ǫABCZAe−2τZBZCe−2τ
)

DαZ(A1ZA2e−2τ · · · ZAn−1ZAne−2τZAn+1) (4.12)

If n is odd, we need an extra e−τ monopole operator which is allowed only when k = 1.

This agrees with the fact that the corresponding SUGRA modes are projected out by the

k = 2 orbifold.

Short vector multiplets. The short vector multiplets come in the SU(3) representations

[n+1, 1] with R-charges y0 = n
3 and dimensions ∆0 = |y0|+1= n+3

3 for n = 0, 1, 2, . . .. When

n=0, this is in fact the conserved current multiplet J (0)
A

B corresponding to the SU(3) global

symmetry of the CFT. This superfield satisfies the constraint D2J (0)
A

B = D̄2J (0)
A

B = 0.

Its highest spin component is the bosonic current

J
(0)B
µA = Z̄A

↔

∂ µZ
B − 1

3
δB
A Z̄C

↔

∂ µZ
C . (4.13)

It has the protected classical dimension of 2. For higher n we expect the series to continue as

J (n)A1...An+1

A0
∼ J (0)(A1

A0
ZA2 · · · ZAn+1) for n = 1, 2, 3, . . . , (4.14)

where we still have to deal with the gauge indices. For n ≥ 1 these operators satisfy only

the constraint D̄2J (n) = 0.

To make these operators gauge invariant, we need
⌊

n
2

⌋

monopole operators with two

units of flux, e−2τ , and in case n = odd another one with one unit of flux, e−τ . Since the

latter ones do not exist for k = 2, there are no operators for odd n, just as the corresponding

SUGRA mode is projected out by the k = 2 orbifold. The e−2τ operators are inserted on

every other Z just as for the hypermultiplet and summed over all possible permutations.

One typical permutation is for example,

trJ (0)(A1

A0
ZA2e−2τZA3 · · · ZAne−2τZAn+1) . (4.15)
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Spin 2 3
2

3
2 1

Energy 3 5
2

5
2 2

R-charge 0 +1 −1 0

Table 8. N = 2 massless graviton multiplet (MGRAV).
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A N = 2 supermultiplets

In the main text we have used the knowledge of the structure of Osp(2|4) supermultiplets

to constrain the spectrum of gravity states on the ‘stretched and squashed’ seven sphere.

These supermultiplets have been worked out in the context of general N = 2 compactifi-

cations in [51] (see also [39]). The short multiplets and their gauge theory interpretation

in a general AdS4/CFT3 context were discussed in [52]. For the convenience of the reader

we list the multiplets relevant to our discussion in this appendix.

The bosonic subgroup of Osp(2|4) is SO(3, 2) × SO(2). The SO(3, 2) part is the con-

formal group in 2+1 dimensions or, equivalently, the isometry group of AdS4. Unitary,

positive energy representations of SO(3, 2) are labeled by spin s and energy E [53]. The

SO(2) part is the R-symmetry and the representation label is the hypercharge y. An

N = 2 supermultiplet is a set of SO(3, 2) × SO(2) representations which is obtained by

acting with the fermionic raising operators of Osp(2|4) onto a chosen SO(3, 2)×SO(2) with

labels (s0, E0, y0), the so-called lowest bosonic submultiplet.

The total number of bosonic submultiplets within one Osp(2|4) representation depends

on the relationships between the labels (s0, E0, y0):

• Long multiplets for E0 > |y0| + s0 + 1:

long graviton (s0 = 1), long gravitino (s0 = 1
2), long vector (s0 = 0),

• Short multiplets ‘I’ for E0 = |y0| + s0 + 1:

short graviton (s0 = 1), short gravitino (s0 = 1
2 ), short vector (s0 = 0),

• Short multiplets ‘II’ for E0 = |y0| ≥ 1
2 :

hypermultiplet (s0 = 0),

• Ultrashort multiplets for E0 = s0 + 1, y0 = 0:

massless graviton (s0 = 1), massless vector (s0 = 0).

Note that there is no massless gravitino as its presence would enhance the supersymmetry

to N > 2.
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1
4
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Spin 2 3
2

3
2

3
2 1 1 1 1

2

Energy E0 + 1 E0 + 3
2 E0 + 1

2 E0 + 1
2 E0 + 1 E0 + 1 E0 E0 + 1

2

R-charge y0 y0 ∓ 1 y0 + 1 y0 − 1 y0 ∓ 2 y0 y0 y0 ∓ 1

Table 9. N = 2 short graviton multiplet (SGRAV). E0 = |y0| + 2

Spin 2 3
2

3
2

3
2

3
2 1 1 1

Energy E0 + 1 E0 + 3
2 E0 + 3

2 E0 + 1
2 E0 + 1

2 E0 + 2 E0 + 1 E0 + 1

R-charge y0 y0 − 1 y0 + 1 y0 − 1 y0 + 1 y0 y0 − 2 y0 + 2

Spin 1 1 1 1
2

1
2

1
2

1
2 0

Energy E0 + 1 E0 + 1 E0 E0 + 3
2 E0 + 3

2 E0 + 1
2 E0 + 1

2 E0 + 1

R-charge y0 y0 y0 y0 − 1 y0 + 1 y0 − 1 y0 + 1 y0

Table 10. N = 2 long graviton multiplet (LGRAV).

Spin 3
2 1 1 1 1

2
1
2

1
2 0

Energy E0 + 1 E0 + 1
2 E0 + 1

2 E0 + 3
2 E0 + 1 E0 + 1 E0 E0 + 1

2

R-charge y0 y0 − 1 y0 + 1 y0 ∓ 1 y0 ∓ 2 y0 y0 y0 ∓ 1

Table 11. N = 2 short gravitino multiplet (SGINO). E0 = |y0| + 3

2

Spin 3
2 1 1 1 1 1

2
1
2

1
2

Energy E0 + 1 E0 + 3
2 E0 + 3

2 E0 + 1
2 E0 + 1

2 E0 + 2 E0 + 1 E0 + 1

R-charge y0 y0 − 1 y0 + 1 y0 − 1 y0 + 1 y0 y0 − 2 y0

Spin 1
2

1
2

1
2 0 0 0 0

Energy E0 + 1 E0 + 1 E0 E0 + 3
2 E0 + 3

2 E0 + 1
2 E0 + 1

2

R-charge y0 + 2 y0 y0 y0 − 1 y0 + 1 y0 − 1 y0 + 1

Table 12. N = 2 long gravitino multiplet (LGINO).

B Choices of dressing for the lowest hypermultiplet

In this appendix we make a curious observation which relates the operator dimensions of the

fields in the hypermultiplet in Scenario I to the ones in Scenario II at the massless level orig-

inally studied in [36]. Recall that in Scenario I the hypermultiplet contains scalar operators

of dimension 2
3 and 5

3 , and a fermionic operator of dimension 7
6 ; in Scenario II it contains
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Spin 1 1
2

1
2 0 0

Energy 2 3
2

3
2 2 1

R-charge 0 +1 −1 0 0

Table 13. N = 2 massless vector multiplet (MVEC).

Spin 1 1
2

1
2

1
2 0 0 0

Energy E0 + 1 E0 + 3
2 E0 + 1

2 E0 + 1
2 E0 + 1 E0 + 1 E0

R-charge y0 y0 ∓ 1 y0 − 1 y0 + 1 y0 ∓ 2 y0 y0

Table 14. N = 2 short vector multiplet (SVEC). E0 = |y0| + 1

Spin 1 1
2

1
2

1
2

1
2

Energy E0 + 1 E0 + 3
2 E0 + 3

2 E0 + 1
2 E0 + 1

2

R-charge y0 y0 − 1 y0 + 1 y0 − 1 y0 + 1

Spin 0 0 0 0 0

Energy E0 + 2 E0 + 1 E0 + 1 E0 + 1 E0

R-charge y0 y0 − 2 y0 y0 + 2 y0

Table 15. N = 2 long vector multiplet (LVEC).

Spin 1
2 0 0

Energy E0 + 1
2 E0 E0 + 1

R-charge y0 ∓ 1 y0 y0 ∓ 2

Table 16. N = 2 hyper multiplet (HYP). E0 = |y0|

scalar operators of dimension 4
3 and 7

3 , and a fermionic operator of dimension 11
6 . We show

that the three mass-squared values of the fields comprising these hypermultiplets are the

same for the two scenarios, but they differ only in the choice of the branches in the formulae

for the dimension. For scalars in AdS4 the corresponding operators have dimensions

∆± =
3

2
±
√

9

4
+m2 (B.1)

and both choices are allowed [54] for −9
4 < m2 < −5

4 . For a scalar of m2 = −14
9 , we

find that ∆− = 2
3 giving the ground state of the Scenario I multiplet, while ∆+ = 7

3

corresponding to the second scalar in the Scenario II multiplet. Similarly, for m2 = −20
9 ,

∆− = 4
3 giving the ground state scalar in Scenario II, while ∆+ = 5

3 corresponding to the
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second scalar in Scenario I. For the fermionic operators the correct formula is [55]

∆f = 1 +

∣

∣

∣

∣

m+
1

2

∣

∣

∣

∣

. (B.2)

We find that with m2 = 1
9 the two choices of sign, m = ±1

3 , reproduce dimensions 7
6 and

11
6 . Thus, for this part of the spectrum the distinction between the two scenarios does not

concern the m2 spectrum in AdS4 but only the boundary conditions. However, we note

that this relationship does not persist to higher levels where completely different values of

m2 occur in the two scenarios.

C Supermultiplets at higher levels

In this appendix, we list the N = 2 supermultiplets of gravity states at the first few Kaluza-

Klein levels n. We group them according to the SU(3) representations [a, b] under which

they transform. One observes that at level n exactly those SU(3) representations occur

which satisfy a+ b ≤ n+2. Furthermore, the supermultiplets with representation [b, a] are

conjugate to the ones in the representation [a, b] in the sense that their R-charge is negated.

In the first subsection of this appendix we present the spectrum following from the

embedding of SU(3) × U(1)R into SO(8) which yields agreement with the gauge theory

(Scenario I). For comparison we also exhibit the first few levels of the spectrum resulting

form Scenario II in the second subsection. The acronyms as MGRAV, SGINO, etc. refer

to the N = 2 supermultiplets defined in the tables 8 to 16 in appendix A. The numbers

following the acronyms specify the R-charges of the supermultiplets of this kind.

Since parity is broken, there are some ambiguities for grouping the states into super-

multiplets. For certain ranges of R-charges one finds SVECy ∪ HYPy+2 = LVECy and

SGRAVy ∪ SGINOy+1 = LGRAVy. In these cases we have noted the long multiplets in

the tables below. These ambiguities can only be resolved by an explicit KK reduction,

but in any case they do not affect the four series of short operators which we are mainly

interested in.

C.1 Scenario I

[0, 0] [0, 1] [0, 2]

MGRAV 0 SGINO −
1

3
HYP −

2

3

LVEC 0

[1, 0] [1, 1]

SGINO + 1

3
MVEC 0

[2, 0]

HYP + 2

3

Table 17. Multiplets of IR theory at level n = 0.

– 20 –



JHEP03(2009)140
[0
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[0
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[0
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[0
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+
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1
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−
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+
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1
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O

+
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+
13

L
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E
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[1
,0

]
[1

,1
]

[1
,2

]

L
G

R
A
V

+
13

L
G

IN
O

0
S
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E
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−

13

L
G

IN
O
−

23

L
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E
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+
13

[2
,0

]
[2

,1
]

S
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IN
O

+
23

S
V

E
C

+
13

L
V

E
C
−

13

[3
,0

]

H
Y

P
+

1

T
ab

le
18.

M
ultiplets

of
IR

theory
at

level
n

=
1.

[0, 0] [0, 1] [0, 2] [0, 3] [0, 4]

LGRAV 0 LGRAV − 4
3
, + 2

3
LGRAV − 2

3
SGINO −1 HYP − 4

3

SGRAV −2, +2 LGINO − 1
3
, − 1

3
, + 5

3
LGINO + 1

3
LVEC 0

LVEC −2, 0, +2 LVEC − 4
3
, + 2

3
LVEC − 2

3
, − 2

3
, + 4

3

[1, 0] [1, 1] [1, 2] [1, 3]

LGRAV − 2
3
, + 4

3
LGRAV 0 LGINO − 1

3
, − 1

3
SVEC − 2

3

LGINO − 5
3
, + 1

3
, + 1

3
LGINO −1, −1, +1, +1 LVEC + 2

3

LVEC − 2
3
, + 4

3
LVEC 0, 0

[2, 0] [2, 1] [2, 2]

LGRAV + 2
3

LGINO + 1
3
, + 1

3
LVEC 0

LGINO − 1
3

LVEC − 2
3

LVEC − 4
3
, + 2

3
, + 2

3

[3, 0] [3, 1]

SGINO +1 SVEC 2
3

LVEC 0

[4, 0]

HYP + 4
3

T
ab

le
19.

M
ultiplets

of
IR

theory
at

level
n

=
2.

–
21

–



JHEP03(2009)140

[0, 0] [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]

LGRAV −1, +1 conj. to [1, 0] conj. to [2, 0] conj. to [3, 0] conj. to [4, 0] conj. to [5, 0]

SGRAV −3, +3

LVEC −3, −1, −1, +1, +1, +3

[1, 0] [1, 1] [1, 2] [1, 3] [1, 4]

LGRAV − 5
3
, + 1

3
, + 7

3
LGRAV −1, +1 conj. to [2, 1] conj. to [3, 1] conj. to [4, 1]

LGINO − 8
3
, − 2

3
, − 2

3
, + 4

3
, + 4

3
LGINO −2, −2, 0, 0, 0, 0, +2, +2

LVEC − 5
3
, − 1

3
, − 1

3
, + 7

3
LVEC −1, −1, +1, +1

[2, 0] [2, 1] [2, 2] [2, 3]

LGRAV − 1
3
, + 5

3
LGRAV + 1

3
LGINO 0, 0 conj. to [3, 2]

LGINO − 4
3
, + 2

3
, + 2

3
LGINO − 2

3
, − 2

3
, + 4

3
, + 4

3
LVEC −1, +1

LVEC − 7
3
, − 1

3
, − 1

3
, + 5

3
, + 5

3
LVEC − 5

3
, + 1

3
, + 1

3
, + 1

3

[3, 0] [3, 1] [3, 2]

LGRAV +1 LGINO + 2
3
, + 2

3
LVEC + 1

3

LGINO 0 LVEC − 1
3

LVEC −1, +1, +1

[4, 0] [4, 1]

SGINO + 4
3

SVEC +1

LVEC + 1
3

[5, 0]

HYP + 5
3

T
ab

le
20.

M
ultiplets

of
IR

theory
at

level
n

=
3.

–
22
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C.2 Scenario II

[0, 0] [0, 1] [0, 2]

MGRAV 0 SGINO −
1

3
HYP 4

3

LVEC 0

[1, 0] [1, 1]

SGINO + 1

3
MVEC 0

[2, 0]

HYP −
4

3

Table 21. Multiplets of Scenario II IR theory at level n = 0.

[0, 0] [0, 1] [0, 2] [0, 3]

SGRAV +0, −0 conj. to [1, 0] conj. to [2, 0] conj. to [3, 0]

LVEC 0, 0

[1, 0] [1, 1] [1, 2]

SGRAV − 2

3
LGINO 0 conj. to [2, 1]

LGINO + 1

3

SGINO + 1

3

LVEC −
2

3

[2, 0] [2, 1]

SGINO −
1

3
SVEC −

2

3

SVEC −
4

3

HYP −
4

3

[3, 0]

HYP −2

Table 22. Multiplets of Scenario II IR theory at level n = 1.
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−
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O

−
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+
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,
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1 3
,
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1 3
S
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−
1
,
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S
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+
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S
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E
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−
0
,
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0
,
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0
,
+

0

L
V

E
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−
2 3
,
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H

Y
P

−
2
,
+

2

[2
,0

]
[2

,1
]

[2
,2

]

S
G

R
A
V

−
4 3

L
G
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O

+
1 3

L
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C

0

L
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−
1 3
,
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1 3
S
G
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O

−
5 3

L
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C

−
4 3
,
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2 3
L
V

E
C

−
2 3

H
Y

P
−

4 3
S
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E
C

−
2 3

[3
,0

]
[3

,1
]

S
G
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O

−
1

S
V
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−
4 3

S
V

E
C

−
2

H
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P
−

2

[4
,0

]

H
Y

P
−

8 3

Table 23. Multiplets of Scenario II IR theory at level n = 2.

D Monopole operators

The monopole (or ’t Hooft) operators in 2 + 1 dimensions can be viewed as changing the

boundary conditions for fields in the path integral in a way that produces some specified

magnetic flux through an S2 around some point x. Hence these can also be called monopole

creation operators [56] and are local.

We can classify the flux of magnetic monopoles in a 3d gauge theory using the scheme

in [57].7 We take the singularity to be of the form,

F ∼ ∗d
(

1

|x|

)

M (D.1)

7The theories of interest in [57] were 4d gauge theories but the monopoles were time-independent objects

identical to what we wish to insert in our 3d gauge theory.
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where M is some generator of the gauge group G. The generalized Dirac quantization

condition is,

e2πiM = 1 (D.2)

By conjugation, M can be brought to the form βaGa where Ga are the Cartan generators

of G.

When there is a Chern-Simons term with level k, such monopoles transform in a

representation of G. For example, consider an abelian theory on S2 × R (i.e in the radial

quantization picture) with the Chern-Simons term k
∫

A∧dA. With n units of flux through

the S2, we can integrate the Chern-Simons term over S2 to obtain kn
∫

A0dt which is a

coupling to a particle of charge kn.

In general, a monopole with flux βa transforms in the representation of G with high-

est weight state given by kβa. Let us illustrate this in the case of U(N). The quan-

tization condition is solved (up to conjugation) by M in the form of a diagonal matrix

diag(m1,m2, . . . ,mN ) with m1 ≥ m2 ≥ . . . ≥ mN all being integers (cf. [58]). Such a

monopole would transform in a representation of U(N) with the highest weight state given

by (km1, km2, . . . , kmN ). In the notation of [58], this corresponds to a Young tableaux

with rows of length km1, km2, . . . , kmN . We note that since we are interested in represen-

tations of U(N) and not SU(N), we must keep track of columns of length N since they

give the charge under the central U(1) subgroup of U(N).

Turning our attention to the U(N)×U(N) gauge theory of interest, we will be interested

in monopole operators of the form (enτ )a1...an

â1...ân
which transform in conjugate representations

of the two gauge groups. Hence we give the choice of flux M in the first group alone. The

conjugate representation is understood to be chosen in the other U(N).

k = 1. The basic monopole operator for k = 1 transforms in the bi-fundamental repre-

sentation with the simplest choice of flux,

M = diag(1, 0, 0, . . . , 0) (eτ )aâ (D.3)

It can be used to render operators with odd powers of Z gauge-invariant [9]. For operators

with two indices in each group, we have the following choices for the flux giving symmetric

and anti-symmetric operators,

M = diag(2, 0, 0, . . . , 0) (e2τ )ab
âb̂

= (e2τ )ba
âb̂

= (e2τ )ba
b̂â
, (D.4)

M = diag(1, 1, 0, . . . , 0) (e2τ )ab
âb̂

= −(e2τ )ba
âb̂

= (e2τ )ba
b̂â
. (D.5)

The symmetric operators were used in [9] while the anti-symmetric operators are important

in writing down the mass deformation discussed in this paper. Note that both choices are

symmetric under the simultaneous interchange of both sets of indices.

When N = 2, the anti-symmetric operator can also be viewed as an abelian monopole

operator creating flux for U(1)diag of U(2) ×U(2) which hence carries U(1)b charge due to

the Chern-Simons term of ABJM theory as explained in [9, 45, 46]. Hence it was denoted

(e2τ )ab
âb̂

= T 2ǫabǫâb̂ in this paper where T 2 is the abelian operator with two units of U(1)b
charge and creates two units of flux for U(1)diag.
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k = 2. When k = 2, one cannot construct a monopole operator with the indices (eτ )aâ.

The smallest choice of flux M = diag(1, 0, . . . , 0), after multiplying by k = 2, already

corresponds to an operator with two pairs of indices, (e2τ )ab
âb̂

symmetric in upper and lower

indices separately,

kM = diag(2, 0, 0, . . . , 0) (e2τ )ab
âb̂

= (e2τ )ba
âb̂

= (e2τ )ba
b̂â
. (D.6)

Trying to form an anti-symmetric operator with 2 indices fails since we would need

kM = diag(1, 1, 0, . . . , 0) but such a M would not obey the Dirac quantization above for

general N . However, when N = 2, we can effectively create an anti-symmetric operator

by using an abelian monopole operator charged under U(1)b as in the k = 1 case. Such an

operator can again be written as

(e2τ )ab
âb̂

= T 2ǫabǫâb̂ . (D.7)

T 2 is again an abelian monopole operator with two units of U(1)b charge but since k = 2,

this requires turning on only one unit of flux for U(1)diag unlike in the k = 1 case above.

Formally, we can assign such an operator the flux diag(1
2 ,

1
2). This satisfies the fractional

quantization condition e2πiH = −1 ∈ Z(SU(2)).8
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[40] D. Fabbri, P. Fré, L. Gualtieri and P. Termonia, M-theory on AdS4 ×M111: the complete

Osp(2|4)timesSU(3) × SU(2) spectrum from harmonic analysis,

Nucl. Phys. B 560 (1999) 617 [hep-th/9903036] [SPIRES].

[41] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from

holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363

[hep-th/9904017] [SPIRES].

[42] M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein supergravity,

Phys. Rept. 130 (1986) 1 [SPIRES].

[43] B. Biran, A. Casher, F. Englert, M. Rooman and P. Spindel, The fluctuating seven sphere in

eleven-dimensional supergravity, Phys. Lett. B 134 (1984) 179 [SPIRES].

[44] I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau

singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [SPIRES].

[45] N. Lambert and D. Tong, Membranes on an orbifold, Phys. Rev. Lett. 101 (2008) 041602

[arXiv:0804.1114] [SPIRES].

[46] J. Distler, S. Mukhi, C. Papageorgakis and M. Van Raamsdonk, M2-branes on M-folds,

JHEP 05 (2008) 038 [arXiv:0804.1256] [SPIRES].

[47] G. ’t Hooft, On the phase transition towards permanent quark confinement,

Nucl. Phys. B 138 (1978) 1 [SPIRES].

[48] V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three

dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [SPIRES].

– 28 –

http://dx.doi.org/10.1016/0370-2693(83)90383-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B128,169
http://dx.doi.org/10.1016/0550-3213(82)90120-1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B208,323
http://dx.doi.org/10.1016/S0550-3213(02)00134-7
http://arxiv.org/abs/hep-th/0107220
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0107220
http://dx.doi.org/10.1016/0370-2693(82)90684-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B119,339
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB,38,1113
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B428,105
http://arxiv.org/abs/hep-th/9802150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203,2,253
http://dx.doi.org/10.1016/0550-3213(85)90643-1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B259,412
http://dx.doi.org/10.1016/S0550-3213(02)00871-4
http://arxiv.org/abs/hep-th/0208137
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0208137
http://arxiv.org/abs/hep-th/0002116
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0002116
http://dx.doi.org/10.1016/S0550-3213(99)00363-6
http://arxiv.org/abs/hep-th/9903036
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9903036
http://arxiv.org/abs/hep-th/9904017
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9904017
http://dx.doi.org/10.1016/0370-1573(86)90163-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC,130,1
http://dx.doi.org/10.1016/0370-2693(84)90666-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B134,179
http://dx.doi.org/10.1016/S0550-3213(98)00654-3
http://arxiv.org/abs/hep-th/9807080
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9807080
http://dx.doi.org/10.1103/PhysRevLett.101.041602
http://arxiv.org/abs/0804.1114
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.1114
http://dx.doi.org/10.1088/1126-6708/2008/05/038
http://arxiv.org/abs/0804.1256
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.1256
http://dx.doi.org/10.1016/0550-3213(78)90153-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B138,1
http://dx.doi.org/10.1088/1126-6708/2002/12/044
http://arxiv.org/abs/hep-th/0207074
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0207074


J
H
E
P
0
3
(
2
0
0
9
)
1
4
0

[49] V. Borokhov, Monopole operators in three-dimensional N = 4 SYM and mirror symmetry,

JHEP 03 (2004) 008 [hep-th/0310254] [SPIRES].

[50] C.V. Johnson, K.J. Lovis and D.C. Page, The Kähler structure of supersymmetric

holographic RG flows, JHEP 10 (2001) 014 [hep-th/0107261] [SPIRES].

[51] A. Ceresole, P. Fre and H. Nicolai, Multiplet structure and spectra of N = 2 supersymmetric

compactifications, Class. Quant. Grav. 2 (1985) 133 [SPIRES].
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